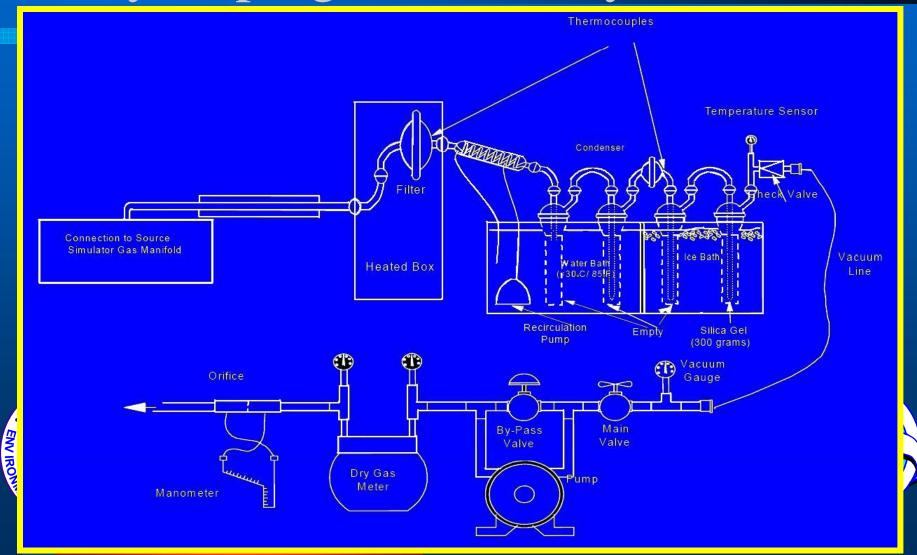
PM10/PM2.5 Test Method

EPA Webinar

2/2/2011

Ron Myers & Ray Merrill

OAQPS


Presentation Topics

- Condensable PM test method
- Particle sizing test method
- Timeline
- Implications of new test methods
- Test method changes from proposal

Dry Impinger Train Layout

Dry Impinger Method Performance

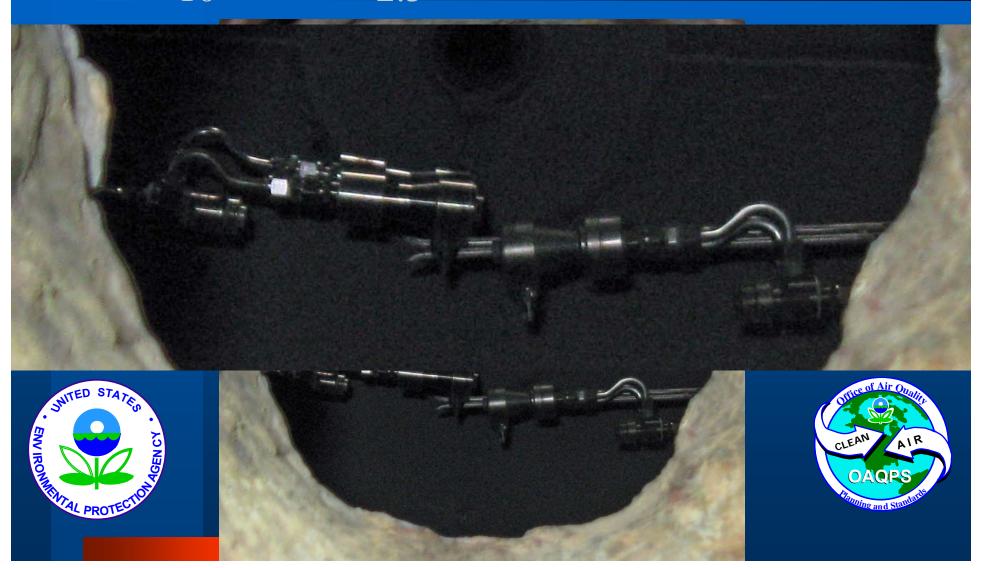
Run	Organic (mg)	Inorganic (mg)	Filter (mg)	Total
1	0.11	2.23	-0.34	2.34
2	0.15	2.88	-0.06	3.03
3	0.09	1.37	0.00	1.46
4	0.30	1.91	0.00	2.22
5	0.16	1.54	0.07	1.77
6	0.33	2.19	-0.17	2.52
7	0.08	1.18	0.30	1.56
8	0.02	1.87	0.17	2.06
Blank	-0.02	0.21	0.00	0.68
Average	0.16	1.90	0.00	2.12
Std Dev	0.1	0.51	0.17	0.45
MDL	0.31	1.54	0.49	1.36

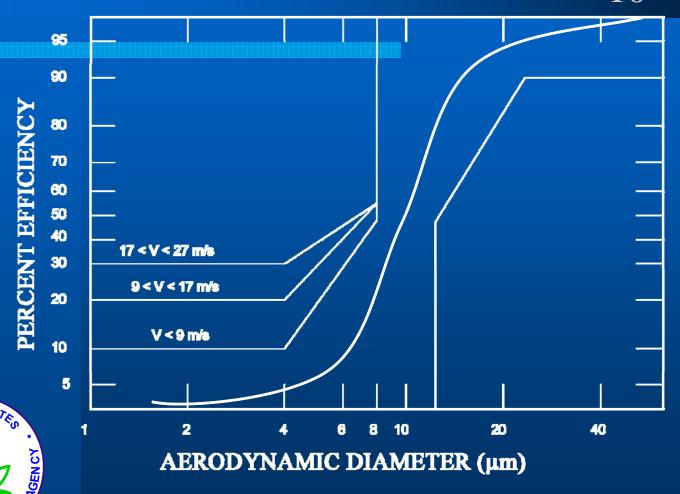
Dry Impinger Method Availability

- November 2005 AW&MA conference presentation on lab assessment of dry impinger method
- March 2007 OTM 28 posted to EPA web page for use during transition period
- August 2008 updated OTM 28
- March 2009 OTM28 & proposed Method
 202 posted

Filterable PM Sizing

Method 201A (1990)

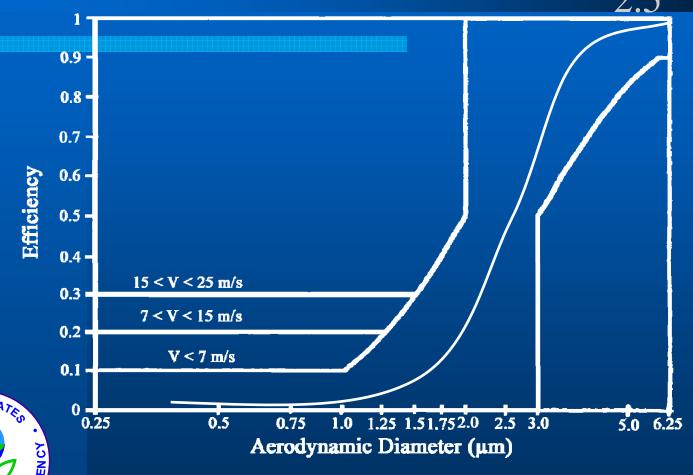

Method 201A (2010)



PM₁₀ & PM_{2.5} Precision Testing

ENV IRO

Performance Criteria – PM₁₀


Efficiency Envelope for Alternatives to PM₁₀ Cyclone

Slide 8

What does "performance crtieria" mean? Does this slide represent what the sampling train actually accomplishes? Is this the criteria that other manufacuture's sampling train would have to meet?

Larry Elmore, 1/14/2010

Performance Criteria – PM_{2.5}

Efficiency Envelope for Alternatives to PM_{2.5} Cyclone

Particle Sizing Method Availability

- Basic Method developed in 1980's
 - Sampler was 5 cyclones of various sizes to obtain particle size distribution
 - Largest cyclone was basis of PM10 cyclone (1990's Method 201A)
 - Smaller cyclone is basis PM2.5 cyclone
- PRE 4 Available before 2002
- OTM 27 Reformatted from PRE 4 and posted August 2008
 - OTM 27 & proposed Method 201A posted March 2009

CPM Precision

Precision Testing Results

- Filterable PM_{2.5} precision ≈ 1 mg
- Total CPM precision ≈ 4 mg
 - Organic CPM precision ≈ 0.5 mg
 - Inorganic CPM precision ≈ 3.5 mg
- H₂SO₄ collection decreases with decreasing concentration
 - Once collected H₂SO₄ is retained
 - H₂SO₄ is good audit material

Timeline and Dates

- Final PM Implementation Rule
 - April 25, 2007
 - FR Vol 72, No 79, pg 20586
- Proposed Test Methods
 - March 25, 2009
 - FR Vol 74, No 56, pg 12970
- Final Test Methods
 - December 21, 2010
 - FR Vol 75, No 244, pg 80118

Recent PM Test Methods Dates

- Signed by the Administrator on Dec 1
- Published in FR on Dec 21
 - Effective date is January 1, 2011
- Extensive Response to Comments
 - Response to major issues in preamble
 - Responses to other issues in RTC document
- Several minor changes from proposal

Changes from proposal (M201A)

- Added definitions
 - Primary PM, PM₁₀, PM_{2.5}
 - Filterable PM
 - Condensable PM
- Revised/clarified method applicability
 - Small diameter stacks (blockage)
 - Wet stacks (water droplets)
 - Temperature limitations
 - Port size requirements
 - Particle sizing (PM₁₀ vs PM_{2.5} vs both)

Changes from proposal (M202)

- Definitions of Primary PM, PM₁₀, PM_{2.5}
- Replaced MeCl with hexane
- Modified filter media specifications
- Added optional glassware preparation
 - User determined requires proof blank
 - Bake at 350°C − no proof blank
- Clarified text in several areas
 - Terminology (field blanks, proof blank)
 - Applicability for wet stacks
 - Use of pH indicators
 - Requirement to use cleaned glassware
 - Nitrogen purge specifications

PM_{2.5} Regulatory Requirements

- Clean Air Fine Particle Implementation Rule
 - Promulgated April 25, 2007
 - January 1, 2011 is critical date for PM_{2.5}
 - New or revised SIP rules must consider PM_{2.5} in setting limits
 - NSR/PSD permits must also consider PM_{2.5} in limits
 - Transition period was for development of improved knowledge using improved test method

Existing use of CPM Methods

- Most States do not address CPM
- Some States address CPM
 - States test methods for CPM are inconsistent
- Only rules that are new or revised need consider CPM
- States do not have to use EPA's test method for acceptance of SIP or NSR/PSD rules

Implications of considering PM_{2.5}

- States w/o CPM testing now
 - PM_{2.5} will need to be addressed in new or revised emissions limits
 - Will likely adopt new test methods
 - Higher numerical limits do not mean higher emissions
 - State will need good information to know where they are and what revised limits will achieve

Implications of considering PM_{2.5}

- States w/ CPM testing now
 - May convince EPA that their rules comply with intent of implementation rule
 - May wish to adopt new test method
 - Numerical limits will require adjustment
 - Adjustment requires careful consideration of what is currently measured vs what new method measures
 - Risk of errors may be greater than for States that are just now adopting CPM testing

Existing State Test Methods Influences

- State prohibits nitrogen purge
 - Sulfate artifact of 200 to 400 mg in 1m³ sample
 - Higher values for higher SO₂, high moisture and/or longer sample times
- State requires nitrogen purge
 - Sulfate artifact of 20 to 30 mg in 1 m³ sample

Higher values for higher SO₂, high moisture and/or longer sample times

Existing State Test Methods Influences (cont)

- State prohibits nitrogen purge but allows correction for artifacts
 - Correction may exceed actual artifact level
 - Correction may account for some artifact
 - Some compounds (chlorides, ammonium etc.)
- State requires nitrogen purge and allows correction for artifacts

Comments or Questions

